An Approach to Early Fault Prediction in Software Systems Using K- Means Clustering
نویسنده
چکیده
Quality of a software component can be measured in terms of fault proneness of data. Quality estimations are made using fault proneness data available from previously developed similar type of projects and the training data consisting of software measurements. To predict faulty modules in software data different techniques have been proposed which includes statistical method, machine learning methods, neural network techniques and clustering techniques. Predicting faults early in the software life cycle can be used to improve software process control and achieve high software reliability. The aim of proposed approach is to investigate that whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using decision tree based Model in combination of K-means clustering as preprocessing technique. This approach has been tested with CM1 real time defect datasets of NASA software projects. The high accuracy of testing results show that the proposed Model can be used for the prediction of the fault proneness of software modules early in the software life cycle. KeywordsClustering, Decision Tree, K-means, software quality.
منابع مشابه
A Comparative Study of Various Distance Measures for Software fault prediction
Different distance measures have been used for efficiently predicting software faults at early stages of software development. One stereotyped approach for software fault prediction due to its computational efficiency is K-means clustering, which partitions the dataset into K number of clusters using any distance measure. Distance measures by using some metrics are used to extract similar data ...
متن کاملA K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Obj...
متن کاملFault Prediction using Hybrid Fuzzy C-Means with Genetic Algorithm and KNN Classifier
Software quality and reliability have become the main concern during the software development. It is very difficult to develop software without any fault. The fault-proneness of a software module is the probability that the module contains faults and a software fault is a defect that causes software failures in an executable project. Early detection of fault prone software components enables ve...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015